Politecnico Di Torino Porto Institutional Repository [article] on Affine Scaling Inexact Dogleg Methods for Bound-constrained Nonlinear Systems on Affine Scaling Inexact Dogleg Methods for Bound-constrained Nonlinear Systems *

نویسندگان

  • Stefania Bellavia
  • Sandra Pieraccini
چکیده

Within the framework of affine scaling trust-region methods for bound constrained problems, we discuss the use of a inexact dogleg method as a tool for simultaneously handling the trust-region and the bound constraints while seeking for an approximate minimizer of the model. Focusing on bound-constrained systems of nonlinear equations, an inexact affine scaling method for large scale problems, employing the inexact dogleg procedure, is described. Global convergence results are established without any Lipschitz assumption on the Jacobian matrix, and locally fast convergence is shown under standard assumptions. Convergence analysis is performed without specifying the scaling matrix used to handle the bounds, and a rather general class of scaling matrices is allowed in actual algorithms. Numerical results showing the performance of the method are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Politecnico Di Torino Porto Institutional Repository [article] Constrained Dogleg Methods for Nonlinear Systems with Simple Bounds Constrained Dogleg Methods for Nonlinear Systems with Simple Bounds *

We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affinescaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is named Constrained Dogleg method. It generates on...

متن کامل

On Affine Scaling Inexact Dogleg Methods for Bound-constrained Nonlinear Systems on Affine Scaling Inexact Dogleg Methods for Bound-constrained Nonlinear Systems *

A class of trust-region methods for large scale bound-constrained systems of nonlinear equations is presented. The methods in this class follow the so called affine-scaling approach and can efficiently handle large scale problems. At each iteration, a suitably scaled region around the current approximate solution is defined and, within such a region, the norm of the linear model of F is trusted...

متن کامل

On affine-scaling inexact dogleg methods for bound-constrained nonlinear systems

A class of trust-region methods for large scale bound-constrained systems of nonlinear equations is presented. The methods in this class follow the so called affine-scaling approach and can efficiently handle large scale problems. At each iteration, a suitably scaled region around the current approximate solution is defined and, within such a region, the norm of the linear model of F is trusted...

متن کامل

Constrained Dogleg Methods for Nonlinear Systems with Simple Bounds Constrained Dogleg Methods for Nonlinear Systems with Simple Bounds *

We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affinescaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is named Constrained Dogleg method. It generates on...

متن کامل

Constrained Dogleg methods for nonlinear systems with simple bounds

We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affinescaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is named Constrained Dogleg method. It generates on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015